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ABSTRACT: The Flory χ-parameter is a ubiquitous
description of the extent of immiscibility that is apparent
between two or more polymeric species. While the formalism
is a powerful one in most systems of technological interest,
experimentally obtaining this parameter requires the assump-
tion of an underlying theoretical model. For charged systems,
mapping to analogous uncharged systems is often assumed by
introducing an “effective χ”, χeff. Random phase approximation
(RPA) analysis based on the Hamiltonian used for recent self-
consistent field theory−liquid-state theories (SCFT−LS)
demonstrates that χeff incorporates molecular-level details
such as charge ordering. Even for simple polyelectrolyte blends where the bare χ is kept constant, the observed χeff will drastically
change as a function of composition; prediction of heterogeneous polyelectrolyte material phase behavior using χeff is thus highly
nontrivial since an understanding of local charge structure is required.

Complex polymer systems involving more than one species
are almost overwhelmingly described both conceptually

and mathematically by the language that Flory and Huggins laid
down more than half a century ago.1−3 The simplicity of the
model harkens back to even older ideas regarding solution
models used to describe miscibility in multicomponent liquids,
such as regular solution theory,3 and is therefore a powerful
formalism that is often useful. In Flory−Huggins theory, the χ-
parameter was introduced to represent the enthalpic con-
tributions to the mixing free energy and physically represents
the energy penalty in kBT that arises due to the short-ranged
(typically dispersive) interactions between two spatially
adjacent components.2 More advanced theories typically
adopt the χ-parameter formalism in the creation of their
models due to its clear interpretation.4,5 Accordingly,
experimental methods rely on these theoretical models to
interpret scattering data as a way to measure the value of χ in
multicomponent polymer systems.5−7

Work on polyelectrolyte blends and block copolymers has
adopted this formalism; in particular, an “effective χ” (χeff) has
been invoked to examine the phase behavior of these
systems.7−11 While such a method of characterizing a
heterogeneous polyelectrolyte melt system is practical and
conceptually appealing, the use of a χeff in charged systems
often leads to difficulty when interpreting the physical reasons
for these parameters since the χeff is no longer simply a
description of local dispersive interactions but rather includes
complicated charge effects. In particular, while many reports on
limited regions of the otherwise expansive parameter space
governing heterogeneous polyelectrolyte systems (e.g., charge
fraction, bare χ-parameter, composition, dielectric constant,
etc.) lead to straightforward trends such as linear corrections to
χ proportional to the charge fraction,9−11 such approaches do

not always hold when larger parameter spaces are consid-
ered.12,13 We seek a general result that links the behavior of
charges on a molecular level to measured values of χeff.
Recent advances in understanding heterogeneous polyelec-

trolyte systems in the melt state have relied upon the
development of multiscale theoretical calculations that
simultaneously articulate polymer length-scale architectures
and ion-scale charge ordering effects.14,15 These tools have been
applied to a number of practical material problems, in particular
the cases of polyelectrolyte blends14,15 and block copolyelec-
trolytes;16 these investigations have demonstrated phase
behaviors that are vastly different from those predicted by
more traditional approaches yet have so far been able to explain
many of the surprising results in the experimental literature.15,16

For low dielectric constant media, simulations and theory
demonstrate that strong Coulombic interactions between
backbone charges and counterions result in the formation of
local ordering.14,17 This typically results in highly asymmetric
phase diagrams, which are highly distorted from analogous
uncharged polymer systems.14,15 It is therefore apparent that
the χeff formalism is dubious since a straightforward mapping
between the charged and uncharged systems is not trivial; we
can use standard random phase approximation (RPA) analysis
to demonstrate that even for the highly simplified case of a
polyelectrolyte blend such a mapping requires knowledge of the
local structure.
RPA analysis can characterize the concentration fluctuations

around (for example) a homogeneous disordered state and can
determine both scattering functions S(k) and regimes of
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thermodynamic stability for mixtures upon assuming perturba-
tions up to second order.5,18 The validity of this type of analysis
can be interrogated by systematically introducing terms of
higher order, which are often required for complicated systems
such as block copolymers to correctly describe a system’s
critical properties.5,19,20 Use of RPA in polyelectrolyte systems
has a long history of development.21−26 Most works consider a
Hamiltonian that directly includes an electrostatic energy term
and an ion entropy term via a potential field that becomes the
electrostatic potential upon extremization of the overall
Hamiltonian.4,24,25,27 While this Hamiltonian itself is essentially
exact, the introduction of perturbation approaches such as RPA
is known to be insufficient for charged systems even when
higher-order terms are included.27 The origin of this
complication is due to the long-range charge interactions,
which do not tend to converge in perturbation treatments.27

A new version of this Hamiltonian ̃
−RPA LS has recently

been developed to overcome these difficulties and has been
previously used in the development of hybrid self-consistent
field theory−liquid-state (SCFT−LS) methods.14 While the
SCFT calculation is inherently a mean-field approach, we self-
consistently incorporate information from LS theory that is
beyond mean-field to circumvent the issues with treating a
charged system using perturbative approaches.14,27 The system
we will consider is a polyelectrolyte blend, whose components
are a charged polymer A and an uncharged polymer B (see
Figure 1). The volume fraction of each component is ϕA and

ϕB for A and B, respectively. A has a length of NA monomers,
with a fraction fq that have a negative charge, and B has a length
of NB monomers (NA = NB = N for this manuscript).
Monomers have a volume ν0. Each negative charge has a
corresponding positive counterion, and both have a radius a.
The electrostatic interaction strength between the charged
species is parametrized by Γ = e2/(8πεrε0akBT), which is the
contact energy in units of kBT between two like-charged
species. This is a function of relative dielectric constant εr and
a; a value of Γ ≈ 1 corresponds to charge interactions in
aqueous, monovalent solutions; however, for polymer melts Γ
≈ 10−50. This range results from considering charges with a ≈
0.25−0.3 nm in a polymer with εr ≈ 4−8, which are typical
literature values.10 For this work we focus on the situation that

εr,A = εr,B; however, there are well-known dielectric
heterogeneity effects that would supplement the current
approach.11,26 The two polymers interact via short-range
interactions using a Flory−Huggins χ-parameter.3 We write
the Hamiltonian ̃

−RPA LS for this system14
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The functionals QA and QB are the single-chain partition
functions (QX[ω̃X] = V−1∫ q(x;N)dx, where ∂q(x;s)/∂s =
[b2∇2/6 − ω̃X]q(x;s) and q(x;0) = 1.0).4 The parameter η̃ is
a Lagrange multiplier that sets the constraint that ϕA + ϕB =
1.0, and the fields ωA and ωB are internally generated fields that
are conjugate to the densities ϕA and ϕB, respectively.

4 Tildes
denote normalization by kBT. ω̃A* = ω̃A + fqμ̃C is denoted with
an asterisk due to the inclusion of the value μ̃C which is the
excess potential that represents the effect of local charge
structure; in our case μ̃C = 2μ̃EXC + μ̃0 is related to the excess
chemical potential μ̃EXC( fqϕA) calculated from liquid state (LS)
theory and the ideal gas chemical potential μ̃0 ∼ ln fqϕA. μ̃EXC,i =
ρj/2∫ drhij(hij − cij) − ρj∫ drcij is calculated using the functions
hij(r) and cij(r) that are the total and direct correlation
functions, respectively, between species i and j.28 These are
calculated using the numerical solution of the Ornstern−
Zernike equation h ̂ij = cîj + ρkcîkĥkj (ρk is the charge density of
species k, hats denote Fourier-transformed values)28 and the
DHEMSA closure (see eqs 6−8 of Zwanikken et al.29). μ̃C is
therefore a function of ϕA since the charge density ρk ∼ ϕA is an
input into its determination.14,28 Calculations using this
Hamiltonian reproduce features on a polymer length scale
and charge ordering length scale simultaneously, which
contrasts to previous approaches that do not capture charge
correlations.14 This implicit inclusion of the charge-based field
μC permits the use of complicated forms that rely on both the
charge and uncharged structural features. Specifically, we can use
μC calculated via LS theory to take into account the local charge
structures that are manifestations of the higher-order terms that
are poorly represented in traditional RPA of electrolyte
systems.14,27,28 By including this field that represents local
structure, we therefore include the appropriate information
such that the charges are treated with nearly complete
correlation information.14 We refer to previous works by the
authors that discuss in detail the use of this Hamiltonian in the
context of self-consistent field theory (SCFT) calculations.14,15

It is possible to expand this Hamiltonian for a polyelectrolyte
blend to the second order and subsequently evaluate the
partition function in a way that accounts for fluctuations at the
Gaussian level. We note that we limit ourselves to the case of a
blend, which is known to be well-described by RPA in the limit
of N → ∞.30 While previous works using this theory have
investigated block copolymers,16 RPA and similar approaches
are highly nontrivial even for diblock copolymers due to the
contributions of higher-order perturbation terms.19 While such
calculations have been carried out for certain systems, such as
random polyampholytes,20 it is unclear how to do so upon
inclusion of charge in the current framework. Nevertheless,
even with the case of the polyelectrolyte blend we can develop
an understanding of the role of charge correlations in

Figure 1. Schematic of the species in a polyelectrolyte blend; A and B
are polymeric species. For the purposes of this paper, A will have a
fraction fq of monomers that are negatively charged. Each of these
charges has a corresponding counterion that has a positive charge.
Structure at the local charge-ordering level considers positive and
negative charges to have radii of a. B will remain uncharged. A and B
have lengths of NA and NB monomers, respectively; for this paper NA =
NB = N = 40. These polymers have a short-range interaction χ, which
does not consider charge effects. χeff attempts to incorporate charge
effects into a related parameter.
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manipulating the observed χeff. We replace the fields ω and ϕ
by their deviations from a homogeneous state (for example,
ω̃B(x) → ⟨ω̃B⟩ + δω̃B(x)). Importantly, we also include the
consideration that the variations in the fields ω̃A* include the
excess chemical potential μ̃C that is dependent on local
electrostatic conditions. Correspondingly, μ̃C = μ̃C(ϕA) is a
function of ϕA, which is one of the other fields over which we
are perturbing. Therefore, we incorporate the replacement δω̃A*
→ δω̃A + α1δϕA + (1/2)α2δϕA

2 where we define the values α1 =
fq(∂μ̃C/∂ϕA) and α2 = fq(∂

2μ̃C/∂ϕA
2). We can define the zeroth-

order contribution to the Hamiltonian ̃
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where we have made the replacement nA ln Q[⟨ω̃A*⟩] =
V⟨ϕA⟩⟨ω̃A*⟩/ν0 (and the same for B).4 Upon replacing
perturbations by their Fourier modes, δΦ(x) = (1/V)-
ΣkδΦ̂(k)e−ik·x (where Φ = ωA, ωB, ϕA, or ϕB), we can write
the second-order contribution to ̃

−RPA LS as
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where gD(m) = 2(m − 1 + em)/m2 is the Debye function that
results from the weak inhomogeneity expansion of the partition
function (derived in, e.g., ref 4)4
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While the second term of this expansion is typically zero due to
the definition of the perturbation as being away from the mean
value, the expansion of ω̃A* out to a quadratic term leads to

ϕA∫ dxδω̃A* = (ϕA/V
2)Σkα2/2δϕ̂A(k)δϕ̂A(−k) which is the

second term on the right side of eq 3. Using this expansion of
the Hamiltonian, ̃

−RPA LS ≈ ̃
−RPA LS,0 + ̃

−RPA LS,2, we can
evaluate the resulting partition function Z due to the
transformation to a Gaussian integral
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Upon integrating over every field except for δϕA, we obtain an
equation of the form
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where the quantity S−1(k) is the inverse scattering function (see
Appendix B of ref 26 for a description of this process).26 When
S−1(0) = 0, long-wavelength fluctuations become unstable,
which represents the spinodal curve.18 For a polyelectrolyte
blend, we obtain the result
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This result yields insight into the overall behavior of a
polyelectrolyte blend in relationship to the behavior of an
uncharged blend via a straightforward mapping. The well-
known value of Suncharged

−1 for an uncharged system is18,30
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This leads to the general expression for a charged blend in the
limit of N → ∞ (i.e., higher-order terms become negligible)

χ χ α ϕ= − Γ f( , , )qeff A (9)

where α = α1 − ⟨ϕ⟩αs/2. This is deceptively simple. While the
correction term α contains only the unknowns α1 and α2,
determining its functional form and even understanding its
physical basis require the elucidation of the local thermody-
namic information that describes the ordered, charged
components. These local charged data are dependent on the
volume fraction ϕA, the magnitude of charge interactions Γ, and

Figure 2. (a) Examples of curves for fqμ̃C that represent the combined potential of the backbone and counterion charges as a function of ϕA and Γ.
31

LS theory is used to calculate these trends with fq = 0.1. Nonmonotonic trends are observed when Γ is large (i.e., when charge correlations are
pronounced). The slope α1 and curvature α2 combine to produce the parameter α given in eq 9; this −αN term is shown in (b) for the same cases
shown in (a). When −αN > 0, χeff > χ is observed, and phase separation is enhanced. Conversely, when −α < 0 then χeff < χ and phase separation is
suppressed. Use of this correction term yields the calculations shown in (c) for the spinodals of the same systems shown in (a) and (b). Purple
arrows in (b) and (c) demonstrate how α dictates the charge-based shift of the phase diagram away from the uncharged spinodal.
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the charge fraction fq, and therefore χeff changes as the phase
diagram is traversed from left to right.
It is possible to calculate the function μC as a function of ϕA,

fq, and Γ. We graph a few examples of such a curve in Figure 2a,
which plots μ̃C versus ϕA for fq = 0.1 and Γ = 4.6−22.2.14 It is
the slope α1 and curvature α2 of Figure 2a that contribute to the
value of χeff via eq 9. This correction −αN is plotted for the
same conditions in Figure 2b, which demonstrates that χeff
changes drastically as a function of ϕA and is highly
nonmonotonic. The results of this mapping are demonstrated
in Figure 2c which plots the corresponding spinodal curves for
a blend with N = 40 and fq = 0.10. Also plotted is an uncharged
blend, which follows the spinodal given by eq 8. The results of
this stability analysis shown in Figure 2 match well to previous
SCFT−LS results in the literature.15

The parameter α is partly a representation of local structural
changes, which can be demonstrated upon considering the
correlation functions hij(r) calculated from LS theory. As an
example, we contrast the behavior of a weakly coupled system
and a more strongly coupled system. Figure 3a demonstrates
hij(r) as ϕA is increased over the range ϕA = 0.09−0.90 for Γ =
4.6 (weakly coupled). In this case there is an abundance of
opposite charges in a disperse area around a given charge; this
correlation decreases as ϕA increases. Alternatively, Figure 3b
shows that an increase in ϕA for Γ = 11.6 initially results in
enhanced ordering of the system. This is characterized by the
appearance of oscillatory features in hij(r) that correspond to
the appearance of a local excess of correlated like charges
beyond the immediately adjacent opposite charges. The
formation of this order represents a drastic change in the
excess chemical potential since the local correlation environ-
ment of each incorporated charge likewise changes. Further-
more, the increased magnitude of Coulombic interactions (due
to the larger value of Γ) enhances the magnitude of this change
in μ̃C. This structural change is the basis of α and corresponds
directly to the initial decrease of μ̃C in Figure 2a. As ϕA is
further increased for Γ = 11.6, h(r) does not show drastic
correlation changes (Figure 3c), and the behavior of μ̃C
becomes similar between Γ = 4.6 and 11.6 (see high-ϕA
regions in Figure 2a). In this regime ion entropy (translational
and excluded volume) effects dominate α since Coulombic
correlations remain roughly constant. This change in balance

between ion entropy and Coulombic correlations drives the
nonmonotonicity in α seen in Figure 2b.
We have only calculated the perturbations around a

homogeneous state, and thus the RPA result is strictly
applicable in the N → ∞ limit for a disordered blend;30

extensions to block copolymers are nontrivial due to the need
to include higher-order terms in the perturbation expansion to
describe the phase diagram appropriately.19 Nevertheless, the
conceptual incorporation of local charge ordering via the
SCFT−LS Hamiltonian as a highly nonmonotonic contribution
with dependence on both fq and ϕA suggests that the use of a
χeff in charged systems may obscure a rich phenomenology.
Such a parameter naturally incorporates effects due to changes
in local charge structure (here captured using μC and its
relationship to h(r)) in a manner mathematically similar to but
physically very different from the bare χ-parameter. We note
that μC could be any potential field that captures local degrees
of freedom; for example, the current model for μC neglects
chain connectivity between charges. In principle this could be
incorporated via more elaborate LS-based theories;33 however,
upon determination of a corresponding μC the treatment within
RPA would be identical. Upon phase separation, the value of
χeff would become spatially varying as the system becomes far
from the homogeneous state due to this ϕA dependence. Since
all of these effects are understandable in the context of the
phase diagrams that we create via RPA or SCFT−LS, and since
there is a pragmatism to characterizing experimental data (such
as scattering data) with a χeff, we suggest that the χeff parameter
(or perhaps rather the less confusing value α) is best
interpreted as a measurement of the local charge structure
upon comparison to the analogous uncharged blend of the
same composition and charge fraction. This interpretation of
χeff will be especially instructive for experiments where the
charge on a polymer can be systematically varied, such as in
poly(ethylene oxide)/lithium salt systems commonplace in
polymer electrolytes.9,10,12 Observing the shift in phase
diagrams of blends using this type of variably charged
component would enable the probing of α and correspondingly
the local charge structure. Alternatively, the chemical nature of
the charged species (counterion size, valency, etc.) could be
tuned to alter overall phase behavior in a fashion that is
predicted based on local charge structures.

Figure 3. (a) Correlation functions hij(r) for charges at a number of values ϕA in systems with Γ = 4.6. As ϕA increases, correlations become less
pronounced; charge structure is typical of weakly coupled Coulombic systems with charges surrounded by an abundance of the opposite charge (i.e.,
minimal charge ordering). (b) Strengthening the Coulombic coupling (Γ = 11.6) leads to enhanced charge ordering and at low ϕA the formation of
oscillatory hij where a like-charge peak appears at ca. 1.3 nm as ϕA is increased to ϕA ≈ 0.2−0.3. This change in the correlation behavior is related to
the initial decrease in μ̃C seen in Figure 2a that corresponds to an enhancement in χeff. (c) At larger values of ϕA for Γ = 11.6 structural features do
not change drastically, leading to μ̃C behaving similarly in both Γ = 4.6 and 11.6 in Figure 2a (and correspondingly similar values of α at high ϕA in
Figure 2b). For all graphs of hij, lighter colors are i = j; darker colors are i ≠ j; and graphs are offset by 1 for clarity.32
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In conclusion, we can use RPA and the Hamiltonian from
SCFT−LS to obtain the stability criterion for a polyelectrolyte
blend as a function of local structural information. This local
information is incorporated into a parameter α that is related to
the experimentally accessible value χeff.

7,9,11,12 The complicated
phenomenology of this term suggests that using a χeff term is
only useful if the full extent of the caveats surrounding it is
understood; unlike the traditional χ it is not related to a simple
second virial coefficient of the free energy but a term that
changes as the local charge densities change. Furthermore, the
current calculation only considers blends, and it is not clear if
this correction is transferrable to more elaborate systems (e.g.,
block copolymers). Nevertheless, the underlying physics is of
practical importance due to the widespread parametrization of
scattering curves with χeff,

12 and this theory would inform the
conceptual understanding of such results in the context of
systems with large amounts of local order.
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